4,007 research outputs found

    Advancing the link between ocean connectivity, ecological function and management challenges

    Get PDF
    Ocean connectivity is a dynamic and rapidly evolving field of research in marine science, partly because there is an increasing demand for information on connectivity that informs effective assessment and management of marine resources. Achieving this will require a better alignment between ocean connectivity tools and developments and the needs and challenges of assessments and conservation. For these reasons, the ICES Journal of Marine Science solicited contributions to the article theme set (TS), Beyond ocean connectivity. We briefly summarize the nine articles that appear herein, grouping them into four general topics: methodological advances, population dynamics and assessment implications of connectivity, spatial and management implications, and connectivity in ecosystem processes. We also discuss the challenges facing ocean connectivity research if it is to effectively support advancing fisheries assessment frameworks and integrated ecosystem approaches. We hope that the contributions included in this TS serve to convince managers and fisheries scientists of the need to incorporate results from research on connectivity

    Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications

    Get PDF
    Limited availability of human neurons poses a significant barrier to progress in biological and preclinical studies of the human nervous system. Current stem cell-based approaches of neuron generation are still hindered by prolonged culture requirements, protocol complexity, and variability in neuronal differentiation. Here we establish stable human induced neural stem cell (hiNSC) lines through the direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells. These hiNSCs can be passaged indefinitely and cryopreserved as colonies. Independently of media composition, hiNSCs robustly differentiate into TUJ1-positive neurons within 4 days, making them ideal for innervated co-cultures. In vivo, hiNSCs migrate, engraft, and contribute to both central and peripheral nervous systems. Lastly, we demonstrate utility of hiNSCs in a 3D human brain model. This method provides a valuable interdisciplinary tool that could be used to develop drug screening applications as well as patient-specific disease models related to disorders of innervation and the brain

    Superpartner spectrum of minimal gaugino-gauge mediation

    Full text link
    We evaluate the sparticle mass spectrum in the minimal four-dimensional construction that interpolates between gaugino and ordinary gauge mediation at the weak scale. We find that even in the hybrid case -- when the messenger scale is comparable to the mass of the additional gauge particles -- both the right-handed as well as the left-handed sleptons are lighter than the bino in the low-scale mediation regime. This implies a chain of lepton production and, consequently, striking signatures that may be probed at the LHC already in the near future.Comment: 8 pages, 3 figures; V2: refs and a few comments added; V3 title change

    Supersymmetric AdS_4 black holes and attractors

    Full text link
    Using the general recipe given in arXiv:0804.0009, where all timelike supersymmetric solutions of N=2, D=4 gauged supergravity coupled to abelian vector multiplets were classified, we construct the first examples of genuine supersymmetric black holes in AdS_4 with nonconstant scalar fields. This is done for various choices of the prepotential, amongst others for the STU model. These solutions permit to study the BPS attractor flow in AdS. We also determine the most general supersymmetric static near-horizon geometry and obtain the attractor equations in gauged supergravity. As a general feature we find the presence of flat directions in the black hole potential, i.e., generically the values of the moduli on the horizon are not completely specified by the charges. For one of the considered prepotentials, the resulting moduli space is determined explicitely. Still, in all cases, we find that the black hole entropy depends only on the charges, in agreement with the attractor mechanism.Comment: 25 pages, uses JHEP3.cl

    Benign paroxysmal positional vertigo after radiologic scanning: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Benign paroxysmal positional vertigo (BPPV) is the most common type of vertigo. It is frequently seen in elderly patients, and the course of the attack may easily mimic cerebrovascular disease. A BPPV attack after a radiologic examination has not been reported previously. We report the cases of two patients who had BPPV attacks after radiologic imaging.</p> <p>Case presentation</p> <p>The first patient with headache and tremor was admitted to the radiology department for cranial computed tomography (CT) imaging. During scanning, she was asked to lie in the supine position with no other head movements for approximately 10 minutes. After the cranial CT imaging, she stood up rapidly, and suddenly experienced a vertigo attack and nausea. The second patient was admitted to the radiology department for evaluation of his renal arteries. During the renal magnetic resonance angiography, he was in the supine position for 20 minutes and asked not to move. After the examination, he stood up rapidly with the help of the technician and suddenly experienced a vertigo attack with nausea and vomiting. The results of standard laboratory analyses and their neurologic examinations were within normal limits and Dix-Hallpike tests showed rotatory nystagmus in both cases. An Epley maneuver was performed to the patients. The results of a control Dix-Hallpike tests after 1 Epley maneuver were negative in both patients.</p> <p>Conclusion</p> <p>Radiologists and clinicians must keep in mind that after radiologic imaging in which the patient is still for some time in the supine position and then helped to stand up rapidly, a BPPV attack may occur.</p

    Current measurement by real-time counting of single electrons

    Full text link
    The fact that electrical current is carried by individual charges has been known for over 100 years, yet this discreteness has not been directly observed so far. Almost all current measurements involve measuring the voltage drop across a resistor, using Ohm's law, in which the discrete nature of charge does not come into play. However, by sending a direct current through a microelectronic circuit with a chain of islands connected by small tunnel junctions, the individual electrons can be observed one by one. The quantum mechanical tunnelling of single charges in this one-dimensional array is time correlated, and consequently the detected signal has the average frequency f=I/e, where I is the current and e is the electron charge. Here we report a direct observation of these time-correlated single-electron tunnelling oscillations, and show electron counting in the range 5 fA-1 pA. This represents a fundamentally new way to measure extremely small currents, without offset or drift. Moreover, our current measurement, which is based on electron counting, is self-calibrated, as the measured frequency is related to the current only by a natural constant.Comment: 9 pages, 4 figures; v2: minor revisions, 2 refs added, words added to title, typos correcte

    The biogeography of South African terrestrial plant invasions

    Get PDF
    Thousands of plant species have been introduced, intentionally and accidentally, to South Africa from many parts of the world. Alien plants are now conspicuous features of many South African landscapes and hundreds of species have naturalised (i.e. reproduce regularly without human intervention), many of which are also invasive (i.e. have spread over long distances). There is no comprehensive inventory of alien, naturalised, and invasive plants for South Africa, but 327 plant taxa, most of which are invasive, are listed in national legislation. We collated records of 759 plant taxa in 126 families and 418 genera that have naturalised in natural and semi-natural ecosystems. Over half of these naturalised taxa are trees or shrubs, just under a tenth are in the families Fabaceae (73 taxa) and Asteraceae (64); genera with the most species are Eucalyptus,Acacia, and Opuntia. The southern African Plant Invaders Atlas (SAPIA) provides the best data for assessing the extent of invasions at the national scale. SAPIA data show that naturalised plants occur in 83% of quarter-degree grid cells in the country. While SAPIA data highlight general distribution patterns (high alien plant species richness in areas with high native plant species richness and around the main human settlements), an accurate, repeatable method for estimating the area invaded by plants is lacking. Introductions and dissemination of alien plants over more than three centuries, and invasions over at least 120 years (and especially in the last 50 years) have shaped the distribution of alien plants in South Africa. Distribution patterns of naturalised and invasive plants define four ecologically-meaningful clusters or “alien plant species assemblage zones”, each with signature alien plant taxa for which trait-environment interactions can be postulated as strong determinants of success. Some widespread invasive taxa occur in high frequencies across multiple zones; these taxa occur mainly in riparian zones and other azonal habitats,or depend on human-mediated disturbance, which weakens or overcomes the factors that determine specificity to any biogeographical region

    Balancing influence between actors in healthcare decision making

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Healthcare costs in most developed countries are not clearly linked to better patient and public health outcomes, but are rather associated with service delivery orientation. In the U.S. this has resulted in large variation in healthcare availability and use, increased cost, reduced employer participation in health insurance programs, and reduced overall population health outcomes. Recent U.S. healthcare reform legislation addresses only some of these issues. Other countries face similar healthcare issues.</p> <p>Discussion</p> <p>A major goal of healthcare is to enhance patient health outcomes. This objective is not realized in many countries because incentives and structures are currently not aligned for maximizing population health. The misalignment occurs because of the competing interests between "actors" in healthcare. In a simplified model these are individuals motivated to enhance their own health; enterprises (including a mix of nonprofit, for profit and government providers, payers, and suppliers, etc.) motivated by profit, political, organizational and other forces; and government which often acts in the conflicting roles of a healthcare payer and provider in addition to its role as the representative and protector of the people. An imbalance exists between the actors, due to the resources and information control of the enterprise and government actors relative to the individual and the public. Failure to use effective preventive interventions is perhaps the best example of the misalignment of incentives. We consider the current Pareto efficient balance between the actors in relation to the Pareto frontier, and show that a significant change in the healthcare market requires major changes in the utilities of the enterprise and government actors.</p> <p>Summary</p> <p>A variety of actions are necessary for maximizing population health within the constraints of available resources and the current balance between the actors. These actions include improved transparency of all aspects of medical decision making, greater involvement of patients in shared medical decision making, greater oversight of guideline development and coverage decisions, limitations on direct to consumer advertising, and the need for an enhanced role of the government as the public advocate.</p
    • 

    corecore